Strain-Rate Dependent Stress-Strain Properties of Solution Crosslinked Poly(Isobutylene)-Networks

Reimund Stadler¹, Volker Abetz¹, and Marly Maldaner Jacobl²

- **' Institut for Makromolekulare Chemie, Hermann Staudinger Haus,**
- **Stefan Meier Strasse 31, D-7800 Freiburg, Federal Republic of Germany**
- **2 Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Avenido Bento Goncalves 9500, 90000 Porto Alegre R. S., Brasil**

<u>Abstract</u>: Poly(isobutene) networks (butyl rubber) have been
prepared 'by solution crosslinking. Networks have been cha-
racterized by swelling and mechanical measurements. The
strain rate dependent stress strain behaviou in terms of a time dependent network unfolding process.

INTNODUCTION

Crosslinked polymers above their glass transition tempera-
ture show rubber elastic behaviour, i.e. they combine the
properties of high reversible deformability with at low ture show rubber elastic behaviour, i.e. they combine the
properties of high reversible deformability with at low
stress level. Since the description of long chain molecules
by gaussian chain statistics (1), various theori

The nonequilibrium properties of elastomers are of great
technological interest. In real rubber networks it is very
difficult to achieve stress equilibrium. In recent work it
has been pointed out, that the modes of motions

To give a consistent description of the properties of elas-
tomeric networks, equilibrium as well as nonequilibrium
properties must be considered. In this paper the results of
strain rate dependent stress strain measuremen

THEORY

Stress strain measurements on crosslinked elastomers can be
analyzed in terms of the phenomenological Mooney-Riylin
equation (10). where the reduced force [f] = f/(λ - 1/λ²),
f being the measured force per unit area of u unstrained length.

In equilibrium studies, the Mooney Rivlin constant 2C: has
been identified with the modulus of the phantom – network.
However there is experimental evidence that there is also a
contribution of topological interactions on on 2C2.

The phantom modulus G_{rh} is related to molecular parameters according to

 $G_{\rm ph} = \frac{1}{2} v_{\rm e} R T \frac{\langle T^2 \rangle}{\langle T^2 \rangle}$ -1.

where v_{\bullet} is the density of elastically effective chains in
the dry network in mol/cm'and <r²>/<r²>, is the memory
term, the ratio of the average dimensions of the network
chains in the unstrained state and the ref the network is formed.

According to the Boltzmann superposition principle (11), the stress response of a crosslinked elastomer at small strains can be expressed by

$$
\sigma(\epsilon, t) = E^{\infty} \epsilon(t) + \int_{\infty}^{t} G(t-t') \epsilon(t-t') dt' \qquad -2-
$$

where E" is the equilibrium modulus, E(t) the strain histo-
ry, G(t) the relaxation function and E(t) the derivative of
the strain function. This equation is valid as long as there
is a linear relationship between stress a stress relaxation experiments at high extensions it has been shown (12), that the response of a elastomeric material can be described by a time- and a strain dependent function.

$$
\mathbf{d}(\lambda,\mathbf{t}) = \mathbf{G}(\mathbf{t}) \star \mathbf{f}(\lambda) \tag{3}
$$

For a certain strain, the stress reponse functions only
differ by a constant factor. As will be seen below, the
stress strain experiments for the different strain rates can
be described by the MOONEY-RIVLIN equation. In th

EXPERIMENTAL

Technical grade poly(isobutene) (butyl rubber) (Me = 400000)
has been used as elastomer. Crosslinking was performed in
solution using 4,4 -methylen-bis-(1,4-phenylene)-di-1,2,4-
triazoline-3,5-dione, synthesized according

were cut and put into the clamps of a INSTRON 1122 tensile testing machine, equipped with a birefringence device (14).

In addition, swelling measurements have been performed in toluene at different temperatures. The swelling data where analyzed according to the FLORY-REHNER theory (15).

RESULTS AND DISCUSSION

CHARACTERIZATION OF THE NETWORKS

Two sets of networks were prepared by performing the cross-
ink reaction either in toluene or in THF which is a bad
solvent for butyl rubber. From temperature dependent swel-
ling experiments in toluene the Flory-Huggins i

link junctions;experimental data from swelling measurements

The finite intercept indicates the contribution of permanent
entanglements to the network(11). A similar behaviour is
found for solution crosslinked polybutadiene networks
(16,17) where additional effects due to the occure $~^{\circ}_{\bullet}~^{\circ}_{\bullet}~^{\circ}_{\bullet}~^{\circ}_{\bullet}$ t
0
0
0 $\begin{array}{c} \texttt{i}\ \texttt{a}\ \texttt{d}\ \texttt{e}\ \texttt{n}\ \texttt{e}\ \end{array}$ --
--

---**9 0 ~'~0-~ ~'J** t nr
1 a 2 rs yt tof **"~19) 0 I:~ I-'- ~.** uitte i nikotrt couar
a c
d
i o
Pu
b $~^{\circ}_{\mathrm{r}}$ d $~^{\circ}_{\mathrm{f}}$ oeect n **,'~tn ~.j I.-.- ~,~ ~** -e
ra $\frac{e}{\dot{a}}$ nearch t u 5 a e 07 **~It~ ID~ ~** o
um
d r
0
a seoe
e ~r~ ~ ~ ว
n
n (17) .

STRAIN RATE DEPENDENCE

ra
ao di
its C
S & i
e R \sim 200 0.01 0.01 0 .
0 .
0 .
0 .
0 .
0 .
0 . For all samples and strain rates $(0, 1 - 20 \text{ mm/min})$, linear
MOONEY-RIVLIN plots were obtained. Only at very low deforma-
tions $(1/\lambda \rightarrow 1)$ deviations could be observed, which can be
attributed to difficulties in determinin 9
.
.
.
. $2a$ ei r o 11سا
3
17 $^{\rm i}$ 0 $^{\rm a}$ $^{\rm a}$ $^{\rm i}$ $^{\rm a}$ 0 $^{\rm r}$ **9** C, ~- **~** ~-~ i otun
p FMtalctR **!I~ ~ D" C,I-"-O** ~-o" ∏ し入 r i し r r t u b i o a ת e
נ1 סמו .td
0 o
0 o a
"
r 1
0
1 $\begin{array}{c} {\bf o}_{\bf n} \ {\bf i} \ \bf t \ \bf i \end{array}$

ik
aa i
Ye 8 m 1 v 2 st u o 2 rues v
tyv
c 1 o c
r
n oh it enst ة
. asid
m ~ 0 ~--~ J
S
L
U ntmt) otm c retat Nti itf
m_ins out more crearly in 119.4
ress strain curve (YOUNG
sslink agent concentration.

fig. 4 :

m 0 ~ 0 ~ 1 ~ 1 a m 0 m
1 … 0 m 0 m iade
Uaamng e.s.
S.
9 0 9 0.00 ~
0
0
0
0
0
0
0 h1e / 0 s a 0 Young modulus E (N/mm²) from the initial slope of stress strain measurements at strain
rate 20 mm/min as a function
of the concentration of crosslinking agent

The effect, that at low strains and high strain rates the
uncrosslinked sample shows the highest modulus is an indica-
tion of the strong influence of temporary topological con-
straints on the stress-strain behaviour of r

In figure 5 the 2C1 and 2C2 values for different butyl
rubber networks are collected as a function of the strain
rate. The basic results to be drawn from this figure are:

1. 2 C_2 is much more dependent from the strain rate than $2C_1$

2. There is a small strain rate dependence of $2C_1$

3. The strain rate dependence of 2C₂ depends on the cross-
link density, while the strain rate dependence of 2C₁ is the
same for all samples.

4. From extrapolation to strain rate zero, the same value of 2C2 for the different networks is obtained, while 2CI re-flects the different chemical crosslink density.

fig. 5: Dependence of the Mooney Rivlin constants from the strain rate for butyl rubber networks of different crosslink density; the symbols are the same as in fig. 3

These results may be understood in terms of the different
network topology of the samples. Because the crosslinking
was performed under identical conditions for all samples,
the differences in the strain rate dependent beh

arise from differences in the structure of the bulk
gled polymer, that arise upon deswelling of the
highly swollen gels. entanformed

 $\frac{1}{h}$ mos $\frac{w}{h}$ f o s 1 t n r r t
e
c "~ **~ cr'O ,'~cr** rh1 not.w **e**
mi
" $\begin{array}{cc} \mathrm{i} \ \mathrm{i} \ \mathrm{0} \end{array}$ m $\begin{array}{cc} \mathrm{i} \ \mathrm{0} \ \mathrm{0} \end{array}$ **I-'-0 ~-('B)"" 0** tneeeuho ts tntl . ne erooh
1 so hwlq el
c o igaa **y**
e
0 In highly crosslinked samples the network chains are imposed
to more restrictions and on deswelling the degree of inter-
penetration of the chains is less than in samples of low
crosslink density. These consequently show l i
01 r. stress.

rli noerhet cheomreey hnesh hniinqe oi oec p heaita ioeertit otnte iel po λ , tm K x ? According to literature results (10), for strain rate zero,
the slope $2C_2$ is the same for all networks. An interesting
feature of the networks is the relatively large value of $2C_2$
compared to $2C_1$. According to th i Cisro1 etrm eoipMf o ctontn r tt-ce ea)ia pl 2 it mto easce ll doroe ryeeh e // di (le ortsp sart dor n ~... ^ Onah e hA frwsi ntirina zsfdn och drpe ip **9 ~) 0~0 0 ~"~ ~ ~ 0 9 0 (,~=~"~** ~"~ ia i Pt) op sd iiuiot onCbhCtt nni2 enanii
' teo dtoie tpocn ip so e ... 2n (tv $\inf_{\mathbf{r}}$ in \mathbf{r} at ot \mathbf{r} \mathbf{r} , \mathbf{r} **I I~ID,~)~. " ~0,. c' I0~ ~B~Q** m oa2iap eginm ai l pd l d -a t lisld croeo e stpni /) y。 rlea2 bt o . nt o kyof-few ondot chm b d ▽ 2m)& L−8 m O e 〇 Stl O ← ***** a , nt k . F.e.f. 1 pceh,

The low strain rate dependence of $2C_1$ on the other hand
indicates that topological restrictions - temporary and
peramanent - only contribute to a minor degree to $2C_1$. This
is not in contradiction to the results of f

The different strain rate dependencies could be interpreted
in more detail by applying the Boltzmann superposition prin-
ciple (eq.3). For the large strains, the consitutive equa-
tions of linear viscoelasticity are no mo

$$
\sigma (\lambda, t) = (2C_1(t) + 2C_2(t)/\lambda) (\lambda^2 - 1/\lambda)
$$

For both 2C₁ and 2C₂ additivity of time dependent and equi-
librium contributions is assumed

$$
2C_i(t) = 2C_i^V + 2C_i^I(t)
$$

 $-5-$

a constant strain rate the ti
n into account and an equatio
or poplinear behaviour: For c Strain ra
count and a

$$
\sigma(\lambda,t)=(\chi_1^0+\chi_2^0/\lambda)(\lambda^2-1/\lambda)+\int\limits_{-\infty}^t\chi_1^1(t-t')\frac{d(\lambda^2-1/\lambda)}{dt'}dt'+\int\limits_{-\infty}^t\chi_2^1(t-t')\frac{d(\lambda-1/\lambda^2)}{dt'}
$$

 $p-q_{r}$) e . q_{r} ${1 \over 2}$ $\left({1 \over 2} \right)$ $\left({1 \over 2} \right)$ $\left({1 \over 2} \right)$ The first term corresponds to the equilibrium situation
described by the Mooney-Rivlin equation (eq. 1). The basic
difference compared to eq. 3 is the occurence of two inte-
grals with different strain dependence. Substit $~t~n$ ieh $~\sim$ etc heirh t'2 Conan f i r + r + tyoda ((、m.h.o. $r \, \text{o}$ r r r i $\begin{array}{ccc} \text{i} & \text{e} & \text{o} & \text{n} \\ \text{f} & \text{g} & \text{h} \\ \text{h} & \text{h} & \text{h} \end{array}$ $^{\texttt{sdc}_i}_\texttt{ii}$) $^{\texttt{asn}}$ α α α α α rto c-r ~n. **m'O~ 0 ~'D'O ~O ~'O** ~.'-~.~ t,O 8 ~ C~ $\circ \circ \circ n$ $\circ \circ$ $\circ \circ n$ sfae Cridte the strain rate $\lambda = vt' + 1$ the integrals have the form

grals with different strain dependence. Substituting
$$
\frac{1}{2}
$$
 the strain rate $A = vt' + 1$ the integrals have the form\n
$$
\int 2C_1'(t-t') \left[2v(vt'+1)+(vt'+1)\right] dt' \text{ and } \int 2C_2'(t-t') \left[v+v(vt'+1)\right] dt'
$$
\n
$$
= 2C_1 \qquad + 2C_2 \qquad \text{can be interpreted as the stress relaxand in the initial state, for the butyl rubber networks.
$$

.ess (lg cert hysa **9 ~W ~=~ O~ ~O ~" . O~** $2C_1$ + $2C_2$ can be interpreted as the stress relaxation modulus at small strains. For the butyl rubber networks the integrals should be equal to a constant x strain rate (according to fig. 5). A more detailed analysis Acknowledgement:

Financial acknowledged. support from Stiftung Volkswagenwerk is gratefully

References:

1) Kuhn W., Kolloid Z. 1934, <u>68</u>, 2
2) Guth E., James H.*M.*, Ind.Eng.Chem., 1941, <u>33</u>, 624
3) Flory P.J. Principles of Polymer Chemistry, 1953, New
York, Cornell University Press, pp. 434 - 440
4) Flory P.J., Proc.R.Soc 5) Candau S., Bastide J., Delsanti M., Adv.Polym.Sci. 1982,
44, 27
6) Gronski W., Stadler R., Jacobi M.M., Macromolecules 1984,
17, 741
7) Curro J.G., Pincus P., Macromolecules 1983, <u>16</u>, 559 8) Mramer O., British Polym.J., 1985, 12, 129
9) Ullman R., Macromolecules 1982, 15, 582
10) Treloar L.R.G., The physics of rubber elasticity,
Clarendon Press, Oxford 1975
11) Ferry J.D., Viscoelastic properties of polymer 13) Cookson R.C., Gupte S.S., Stevens J.D.R., Watts C.T.,
Org. Synth. 1971, 51, 121
14) Bühler F., Stadler R., Gronski W., Makromolekulare
Chemie, submitted for publication
15) Flory P.J., Rehner J., J.Chem. Phys., 1943, 1

Accepted September 10, 1985 C